ตัววิ่ง

wecome to my blog :)

วันอาทิตย์ที่ 17 กุมภาพันธ์ พ.ศ. 2556

Ram

HANDDISK
ฮาร์ดดิสก์ชนิดต่างๆ
ฮาร์ดดิสก์ (อังกฤษ: hard disk) หรือ จานบันทึกแบบแข็ง (ศัพท์บัญญัติ) คือ อุปกรณ์คอมพิวเตอร์ที่บรรจุข้อมูลแบบไม่ลบเลือน มีลักษณะเป็นจานโลหะที่เคลือบด้วยสารแม่เหล็กซึ่งหมุนอย่างรวดเร็วเมื่อทำงาน การติดตั้งเข้ากับตัวคอมพิวเตอร์สามารถทำได้ผ่านการต่อเข้ากับมาเธอร์บอร์ด(motherboard) ที่มีอินเตอร์เฟซแบบขนาน (PATA) , แบบอนุกรม (SATA) และแบบเล็ก (SCSI) ทั้งยังสามารถต่อเข้าเครื่องจากภายนอกได้ผ่านทางสายยูเอสบี, สายไฟร์ไวร์ของบริษัท Apple ที่เป็นที่รู้จักน้อยกว่า รวมไปถึงอินเตอร์เฟซอนุกรมแบบต่อนอก (eSATA) ซึ่งทำให้การใช้ฮาร์ดดิสก์ทำได้สะดวกยิ่งขึ้นเมื่อไม่มีคอมพิวเตอร์ถาวรเป็นของตนเอง
ฮาร์ดดิสก์ SSD
โดยในปี 2008 ได้มีการพัฒนาเป็น Hybrid drive และ SSD 
ประวัติ
ชิ้นส่วนภายใน ในปี 1997
ฮาร์ดดิสก์ที่มีกลไกแบบปัจจุบันถูกประดิษฐ์ขึ้นเมื่อ พ.ศ. 2499 โดยนักประดิษฐ์ยุคบุกเบิกแห่งบริษัทไอบีเอ็ม เรย์โนล์ด จอห์นสัน โดยมีความจุเริ่มแรกที่ 100kb มีขนาด 20 นิ้ว
ในปี ค.ศ. 1980 ฮาร์ดดิสก์เป็นสิ่งที่หายากและราคาแพงมาก แต่หลังจากนั้นฮาร์ดดิสก์กลายเป็นมาตรฐานของพีซีและราคาถูกลงมาก
สิ่งที่เปลี่ยนแปลงของฮาร์ดดิสก์จากปี 1980 ถึงปัจจุบัน
§             ความจุเพิ่มขึ้น จาก 3.75mb เป็น 2tb (2048gb)
§             ขนาดเล็กลงกว่าเดิมมาก
§             ราคาต่อความจุถูกลงมาก
§             ความเร็วเพิ่มขึ้น

[แก้]ขนาดและความจุ
แนวโน้มในการเพิ่มขึ้นของการพัฒนาฮาร์ดดิสก์
ความจุของฮาร์ดดิสก์โดยทั่วไปในปัจจุบันนั้นมีตั้งแต่ 20 จิกะไบต์ ถึง 2 เทระไบต์
§             ขนาดความหนา 8 inch: 9.5 นิ้ว×4.624 นิ้ว×14.25 นิ้ว (241.3 มิลลิเมตร×117.5 มิลลิเมตร×362 มิลลิเมตร)
§             ขนาดความหนา 5.25 inch: 5.75 นิ้ว×1.63 นิ้ว×8 นิ้ว (146.1 มิลลิเมตร×41.4 มิลลิเมตร×203 มิลลิเมตร)
ขนาดฮาร์ดดิสในอดีต
รุ่นและขนาดฮาร์ดดิสตั้งแต่ 8 5.25 3.5 2.5 1.8 และ 1
ปัจจุบันภายในปี 2551 มีประเภทของฮาร์ดดิสก์ต่อไปนี้
§             ขนาดความหนาขนาดความหนา 3.5 นิ้ว = 4 นิ้ว×1 นิ้ว×5.75 นิ้ว (101.6 มิลลิเมตร×25.4 มิลลิเมตร×146 มิลลิเมตร) = 376.77344cm³
เป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์ตั้งโต๊ะ Desktop PC หรือคอมพิวเตอร์ขนาดใหญ่ Serverความเร็วในการหมุนจาน 10,000 7,200 5,400 RPM ตามลำดับ โดยมีความจุในปัจจุบันตั้งแต่ 80 GB ถึง 2 TB
§             ขนาดความหนา 2.5 = 2.75 นิ้ว× 0.3740.59 นิ้ว×3.945 นิ้ว (69.85 มิลลิเมตร×9.515 มิลลิเมตร×100 มิลลิเมตร) = 66.3575cm³-104.775cm³
นิ้วเป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์พกพา Notebook , Laptop ,UMPC,Netbook, อุปกรณ์มัลติมีเดียพกพา ความเร็วในการหมุนจาน 5,400 RPM โดยมีความจุในปัจจุบันตั้งแต่ 60 GB ถึง 320 GB
§             ขนาดความหนา1.8 นิ้ว: 55 มิลลิเมตร×8 มิลลิเมตร×71 มิลลิเมตร= 30.672cm³
§             ขนาดความหนา1 นิ้ว: 43 มิลลิเมตร×5 มิลลิเมตร×36.4 มิลลิเมตร
§             ขนาดความหนา1 นิ้ว: 24 มิลลิเมตร×5 มิลลิเมตร×32 มิลลิเมตร
ยิ่งมีความจุมาก ก็จะยิ่งทำให้การทำงานมีประสิทธิภาพมากขึ้น โดยความต้องการของตลาดในปัจจุบันที่ต้องการแหล่งเก็บข้อมูลที่มีความจุในปริมาณมาก มีความน่าเชื่อถือในด้านการรักษาความปลอดภัยของข้อมูล และไม่จำเป็นต้องต่อเข้ากับอุปกรณ์ที่ใหญ่กว่าอันใดอันหนึ่งได้นำไปสู่ฮาร์ดดิสก์รูปแบบใหม่ต่างๆ เช่นกลุ่มจานบันทึกข้อมูลอิสระประกอบจำนวนมากที่เรียกว่าเทคโนโลยี RAID รวมไปถึงฮาร์ดดิสก์ที่มีลักษณะเชื่อมต่อกันเป็นเครือข่าย เพื่อที่ผู้ใช้จะได้สามารถเข้าถึงข้อมูลในปริมาณมากได้ เช่นฮาร์ดแวร์ NAS network attached storage เป็นการนำฮาร์ดดิสก์มาทำเป็นเครื่อข่ายส่วนตัว และระบบ SAN storage area network เป็นการนำฮาร์ดดิสก์มาเป็นพื้นที่ส่วนกลางในการเก็บข้อมูล
[แก้]หลักการทำงานของฮาร์ดดิสก์
ภายในฮาร์ดิสก์
§             หลักการบันทึกข้อมูลลงบนฮาร์ดดิสก์ไม่ได้แตกต่างจากการบันทึกลงบนเทปคาสเซ็ทเลย เพราะทั้งคู่ต้องใช้สารบันทึกคือสารแม่เหล็กเหมือนกัน สารแม่เหล็กนี้สามารถลบหรือเขียนได้ใหม่อยู่ตลอดเวลา โดยเมื่อบันทึกหรือเขียนไปแล้ว มันสามารถจำรูปแบบเดิมได้เป็นเวลาหลายปี ความแตกต่างระหว่างเทปคาสเซ็ทกับฮาร์ดดิสก์มีดังนี้
§                 สารแม่เหล็กในเทปคาสเซ็ท ถูกเคลือบอยู่บนแผ่นพลาสติกขนาดเล็ก เป็นแถบยาว แต่ในฮาร์ดดิสก์ สารแม่เหล็กนี้ จะถูกเคลือบอยู่บนแผ่นแก้ว หรือแผ่นอะลูมิเนียมที่มีความเรียบมากจนเหมือนกับกระจก
§                 สำหรับเทปคาสเซ็ท ถ้าคุณต้องการเข้าถึงข้อมูลในบริเวณใดบริเวณหนึ่ง ก็จะต้องเลื่อนแผ่นเทปไปที่หัวอ่าน โดยการกรอเทป ซึ่งต้องใช้เวลาหลายนาที ถ้าเทปมีความยาวมาก แต่สำหรับฮาร์ดดิสก์ หัวอ่านสามารถเคลื่อนตัวไปหาตำแหน่งที่ต้องการในเกือบจะทันที
§                 แผ่นเทปจะเคลื่อนที่ผ่านหัวอ่านเทปด้วยความเร็ว 2 นิ้วต่อวินาที (5.08 เซนติเมตรต่อวินาที) แต่สำหรับหัวอ่านของฮาร์ดดิสก์ จะวิ่งอยู่บนแผ่นบันทึกข้อมูล ที่ความเร็วในการหมุนถึง 30000 นิ้วต่อวินาที (ประมาณ 170 ไมล์ต่อชั่วโมง หรือ 270 กิโลเมตรต่อชั่วโมง)
§                 ข้อมูลในฮาร์ดดิสก์เก็บอยู่ในรูปของโดเมนแม่เหล็ก ที่มีขนาดเล็กมากๆ เมื่อเทียบกับโดเมนของเทปแม่เหล็ก ขนาดของโดเมนนี้ยิ่งมีขนาดเล็กเท่าไร ความจุของฮาร์ดดิสก์จะยิ่งมีขนาดเพิ่มขึ้นเท่านั้น และสามารถเข้าถึงข้อมูลได้ในเวลาสั้น
§             เครื่องคอมพิวเตอร์ตั้งโต๊ะปัจจุบันจะมีความจุของฮาร์ดดิสก์ประมาณ 600 GB ถึง 40 TB ข้อมูลที่เก็บลงในฮาร์ดดิสก์ เก็บอยู่ในรูปของไฟล์ ซึ่งประกอบด้วยข้อมูลที่เรียกว่า ไบต์ : ไบต์คือรหัส แอสกี้ ที่แสดงออกไปตัวอักษร รูปภาพ วิดีโอ และเสียง โดยที่ไบต์จำนวนมากมาย รวมกันเป็นคำสั่ง หรือโปรแกรมทางคอมพิวเตอร์ มีหัวอ่านของฮาร์ดดิสก์อ่านข้อมูลเหล่านี้ และนำข้อมูลออกมา ผ่านไปยังตัวประมวลผล เพื่อคำนวณและแปรผลต่อไป
§             เราสามารถคิดประสิทธิภาพของฮาร์ดดิสก์ได้ 2 ทางคือ
§                 อัตราการไหลของข้อมูล (Data rate) คือจำนวนไบต์ต่อวินาที ที่หัวอ่านของฮาร์ดดิสก์สามารถจะส่งไปให้กับซีพียูหรือตัวประมวลผล ซึ่งปกติมีอัตราประมาณ 5 ถึง 400 เมกะไบต์ต่อวินาที
§                 เวลาค้นหา (Seek time) เวลาที่ข้อมูลถูกส่งไปให้กับซีพียู โดยปกติประมาณ 10 ถึง 20 มิลลิวินาที
[แก้]การเก็บข้อมูล
การเก็บข้อมูลบนฮาร์ดดิสก์
ข้อมูลที่เก็บลงในฮาร์ดดิสก์จะอยู่บนเซกเตอร์และแทร็ก แทร็กเป็นรูปวงกลม ส่วนเซกเตอร์เป็นเสี้ยวหนึ่งของวงกลม อยู่ภายในแทร็กดังรูป แทร็กแสดงด้วยสีเหลือง ส่วนเซกเตอร์แสดงด้วยสีแดง ภายในเซกเตอร์จะมีจำนวนไบต์คงที่ ยกตัวอย่างเช่น 256 ถึง 512 ขึ้นอยู่กับว่าระบบปฏิบัติการของคอมพิวเตอร์จะจัดการแบ่งในลักษณะใด เซกเตอร์หลายๆ เซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Clusters) ขั้นตอน ฟอร์แมต ที่เรียกว่า การฟอร์แมตระดับต่ำ (Low -level format ) เป็นการสร้างแทร็กและเซกเตอร์ใหม่ ส่วนการฟอร์แมตระดับสูง (High-level format) ไม่ได้ไปยุ่งกับแทร็กหรือเซกเตอร์ แต่เป็นการเขียน FAT ซึ่งเป็นการเตรียมดิสก์เพื่อที่เก็บข้อมูลเท่านั้น
[แก้]ดูเพิ่ม
§             เอสเอสดี (Solid State Drive)
§             แฟลชไดรฟ์ (Flash Dive)
§             หน่วยความจุ
§                 บิต
§                 ไบต์
§                 กิโลไบต์
§                 เมกะไบต์
§                 กิกะไบต์
§                 เทราไบต์
[แก้]อ้างอิง
1.                                ^ http://www.intel.com/th_TH/consumer/products/storage.htm
2.                              ^ http://www.intel.com/design/flash/nand/index.htm
3.                              ^ http://www.intel.com/design/flash/nand/mainstream/index.htm







RAM
RAM ย่อมาจากคำว่า Random-Access Memory เป็นหน่วยความจำของระบบ มีหน้าที่รับข้อมูลเพื่อส่งไปให้ CPU ประมวลผลจะต้องมีไฟเข้า Module ของ RAM ตลอดเวลา ซึ่งจะเป็น chip ที่เป็น IC ตัวเล็กๆ ถูก pack อยู่บนแผงวงจร หรือ Circuit Board เป็น module
เทคโนโลยีของหน่วยความจำมีหลักการที่แตกแยกกันอย่างชัดเจน 2 เทคโนโลยี คือหน่วยความจำแบบ DDR หรือ Double Data Rate (DDR-SDRAM, DDR-SGRAM) ซึ่งเป็นเทคโนโลยีที่พัฒนาต่อเนื่องมาจากเทคโนโลยีของหน่วยความจำแบบ SDRAM และ SGRAM และอีกหนึ่งคือหน่วยความจำแบบ Rambus ซึ่งเป็นหน่วยความจำที่มีแนวคิดบางส่วนต่างออกไปจากแบบอื่น


SDRAM

รูปแสดง SDRAM
อาจจะกล่าวได้ว่า SDRAM (Synchronous Dynamic Random Access Memory) นั้นเป็น Memory ที่เป็นเทคโนโลยีเก่าไปเสียแล้วสำหรับยุคปัจจุบัน เพราะเป็นการทำงานในช่วง Clock ขาขึ้นเท่านั้น นั้นก็คือ ใน1 รอบสัญญาณนาฬิกา จะทำงาน 1 ครั้ง ใช้ Module แบบ SIMM หรือ Single In-line Memory Module โดยที่ Module ชนิดนี้ จะรองรับ datapath 32 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณเดียวกัน

DDR - RAM


รูปแสดง DDR - SDRAM

หน่วยความจำแบบ DDR-SDRAM นี้พัฒนามาจากหน่วยความจำแบบ SDRAM เอเอ็มดีได้ทำการพัฒนาชิปเซตเองและให้บริษัทผู้ผลิตชิปเซตรายใหญ่อย่าง VIA, SiS และ ALi เป็นผู้พัฒนาชิปเซตให้ ปัจจุบันซีพียูของเอเอ็มดีนั้นมีประสิทธิภาพโดยรวมสูงแต่ยังคงมีปัญหาเรื่องความเสถียรอยู่บ้าง แต่ต่อมาเอเอ็มดีหันมาสนใจกับชิปเซตสำหรับซีพียูมากขึ้น ขณะที่ทางเอเอ็มดีพัฒนาชิปเซตเลือกให้ชิปเซต AMD 760 สนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR เพราะหน่วยความจำแบบ DDR นี้ จัดเป็นเทคโนโลยีเปิดที่เกิดจากการร่วมมือกันพัฒนาของบริษัทยักษ์ใหญ่อย่างเอเอ็มดี, ไมครอน, ซัมซุง, VIA, Infineon, ATi, NVIDIA รวมถึงบริษัทผู้ผลิตรายย่อยๆ อีกหลายDDR-SDRAM เป็นหน่วยความจำที่มีบทบาทสำคัญบนการ์ดแสดงผล 3 มิติ
ทางบริษัท nVidia ได้ผลิต GeForce ใช้คู่กับหน่วยความจำแบบ SDRAM แต่เกิดปัญหาคอขวดของหน่วยความจำในการส่งถ่ายข้อมูลทำให้ทาง nVidia หาเทคโนโลยีของหน่วยความจำใหม่มาทดแทนหน่วยความจำแบบ SDRAM โดยเปลี่ยนเป็นหน่วยความจำแบบ DDR-SDRAM การเปิดตัวของ GeForce ทำให้ได้พบกับ GPU ตัวแรกแล้ว และทำให้ได้รู้จักกับหน่วยความจำแบบ DDR-SDRAM เป็นครั้งแรกด้วย การที่ DDR-SDRAM สามารถเข้ามาแก้ปัญหาคอคอดของหน่วยความจำบนการ์ดแสดงผลได้ ส่งผลให้ DDR-SDRAM กลายมาเป็นมาตรฐานของหน่วยความจำที่ใช้กันบนการ์ด 3 มิติ ใช้ Module DIMM หรือ Dual In-line Memory Module โดย Module นี้เพิ่งจะกำเนิดมาไม่นานนัก มี datapath ถึง 64 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณที่ต่างกัน

Rambus

รูปแสดง Rambus

Rambus นั้นทางอินเทลเป็นผู้ที่ให้การสนับสนุนหลักมาตั้งแต่แรกแล้ว Rambus ยังมีพันธมิตรอีกเช่น คอมแพค, เอชพี, เนชันแนล เซมิคอนดักเตอร์, เอเซอร์ แลบอเรทอรีส์ ปัจจุบัน Rambus ถูกเรียกว่า RDRAM หรือ Rambus DRAM ซึ่งออกมาทั้งหมด 3 รุ่นคือ Base RDRAM, Concurrent RDRAM และ Direct RDRAM RDRAM แตกต่างไปจาก SDRAM เรื่องการออกแบบอินเทอร์-เฟซของหน่วยความจำ Rambus ใช้วิธีการจัด address การจัดเก็บและรับข้อมูลในแบบเดิม ในส่วนการปรับปรุงโอนย้ายถ่ายข้อมูล ระหว่าง RDRAM ไปยังชิปเซตให้มีประสิทธิภาพสูงขึ้น มีอัตราการส่งข้อมูลเป็น 4 เท่าของความเร็ว FSB ของตัว RAM คือ มี 4 ทิศทางในการรับส่งข้อมูล เช่น RAM มีความเร็ว BUS = 100 MHz คูณกับ 4 pipline จะเท่ากับ 400 MHz
วิธีการเพิ่มประสิทธิภาพในการขนถ่ายข้อมูลของ RDRAM นั้นก็คือ จะใช้อินเทอร์เฟซเล็ก ๆ ที่เรียกว่า Rambus Interface ซึ่งจะมีอยู่ที่ปลายทางทั้ง 2 ด้าน คือทั้งในตัวชิป RDRAM เอง และในตัวควบคุมหน่วยความจำ (Memory controller อยู่ในชิปเซต) เป็นตัวช่วยเพิ่มแบนด์วิดธ์ให้ โดย Rambus Interface นี้จะทำให้ RDRAM สามารถขนถ่ายข้อมูลได้สูงถึง 400 MHz DDR หรือ 800 เมกะเฮิรตซ์ เลยทีเดียว
แต่การที่มีความสามารถในการขนถ่ายข้อมูลสูง ก็เป็นผลร้ายเหมือนกัน เพราะทำให้มีความจำเป็นต้องมี Data path หรือทางผ่านข้อมูลมากขึ้นกว่าเดิม เพื่อรองรับปริมาณการขนถ่ายข้อมูลที่เพิ่มขึ้น ซึ่งนั่นก็ส่งผลให้ขนาดของ die บนตัวหน่วยความจำต้องกว้างขึ้น และก็ทำให้ต้นทุนของหน่วยความจำแบบ Rambus นี้ สูงขึ้นและแม้ว่า RDRAM จะมีการทำงานที่ 800 เมกะเฮิรตซ์ แต่เนื่องจากโครงสร้างของมันจะเป็นแบบ 16 บิต (2 ไบต์) ทำให้แบนด์วิดธ์ของหน่วยความจำชนิดนี้ มีค่าสูงสุดอยู่ที่ 1.6 กิกะไบต์ต่อวินาทีเท่านั้น (2 x 800 = 1600) ซึ่งก็เทียบเท่ากับ PC1600 ของหน่วยความจำแบบ DDR-SDRAM

สัญญาณนาฬิกา 

DDR-SDRAM จะมีพื้นฐานเหมือนกับ SDRAM ทั่วไปมีความถี่ของสัญญาณนาฬิกาเท่าเดิม (100 และ 133 เมกะเฮิรตซ์) เพียงแต่ว่า หน่วยความจำแบบ DDR นั้น จะสามารถขนถ่ายข้อมูลได้มากกว่าเดิมเป็น 2 เท่า เนื่องจากมันสามารถขนถ่ายข้อมูลได้ทั้งในขาขึ้นและขาลงของหนึ่งรอบสัญญาณนาฬิกา ในขณะที่หน่วยความจำแบบ SDRAM สามารถขนถ่ายข้อมูลได้เพียงขาขึ้นของรอบสัญญาณนาฬิกาเท่านั้น
ด้วยแนวคิดง่าย ๆ แต่สามารถเพิ่มแบนด์วิดธ์ได้เป็นสองเท่า และอาจจะได้พบกับหน่วยความจำแบบ DDR II ซึ่งก็จะเพิ่มแบนด์วิดธ์ขึ้นไปอีก 2 เท่า จากหน่วยความจำแบบ DDR (หรือเพิ่มแบนด์วิดธ์ไปอีก 4 เท่า เมื่อเทียบกับหน่วยความจำแบบ SDRAM) ซึ่งก็มีความเป็นไปได้สูง เพราะจะว่าไปแล้วก็คล้ายกับกรณีของ AGP ซึ่งพัฒนามาเป็น AGP 2X 4X และ AGP 8X
หน่วยความจำแบบ DDR จะใช้ไฟเพียง 2.5 โวลต์ แทนที่จะเป็น 3.3 โวลต์เหมือนกับ SDRAM ทำให้เหมาะที่จะใช้กับโน้ตบุ๊ก และด้วยการที่พัฒนามาจากพื้นฐานเดียว DDR-SDRAM จะมีความแตกต่างจาก SDRAM อย่างเห็นได้ชัดอยู่หลายจุด เริ่มตั้งแต่มีขาทั้งหมด 184 pin ในขณะที่ SDRAM จะมี 168 pin อีกทั้ง DDR-SDRAM ยังมีรูระหว่าง pin เพียงรูเดียว ในขณะที่ SDRAM จะมี 2 รู ซึ่งนั่นก็เท่ากับว่า DDR-SDRAM นั้น ไม่สามารถใส่ใน DIMM ของ SDRAM ได้ หรือต้องมี DIMM เฉพาะใช้ร่วมกันไม่ได้

การเรียกชื่อ RAM 

Rambus ซึ่งใช้เรียกชื่อรุ่นหน่วยความจำของตัวเองว่า PC600, PC700 และ ทำให้ DDR-SDRAM เปลี่ยนวิธีการเรียกชื่อหน่วยความจำไปเช่นกัน คือแทนที่จะเรียกตามความถี่ของหน่วยความจำว่าเป็น PC200 (PC100 DDR) หรือ PC266 (PC133 DDR) กลับเปลี่ยนเป็น PC1600 และ PC2100 ซึ่งชื่อนี้ก็มีที่มาจากอัตราการขนถ่ายข้อมูลสูงสุดที่หน่วยความจำรุ่นนั้นสามารถทำได้ ถ้าจะเปรียบเทียบกับหน่วยความจำแบบ SDRAM แล้ว PC1600 ก็คือ PC100 MHz DDR และ PC2100 ก็คือ PC133 MHz DDR เพราะหน่วยความจำที่มีบัส 64 บิต หรือ 8 ไบต์ และมีอัตราการขนถ่ายข้อมูล 1600 เมกะไบต์ต่อวินาที ก็จะต้องมีความถี่อยู่ที่ 200 เมกะเฮิรตซ์ (8 x 200 = 1600) หรือถ้ามีแบนด์วิดธ์ที่ 2100 เมกะไบต์ต่อวินาที ก็ต้องมีความถี่อยู่ที่ 266 เมกะเฮิรตซ์ (8 x 266 = 2100)

อนาคตของ RAM 

บริษัทผู้ผลิตชิปเซตส่วนใหญ่เริ่มหันมาให้ความสนใจกับหน่วยความจำแบบ DDR กันมากขึ้น อย่างเช่น VIA ซึ่งเป็นบริษัทผู้ผลิตชิปเซตรายใหญ่ของโลกจากไต้หวัน ก็เริ่มผลิตชิปเซตอย่าง VIA Apollo KT266 และ VIA Apollo KT133a ซึ่งเป็นชิปเซตสำหรับซีพียูในตระกูลแอธลอน และดูรอน (Socket A) รวมถึงกำหนดให้ VIA Apolle Pro 266 ซึ่งเป็นชิปเซตสำหรับเซลเลอรอน และเพนเทียม (Slot1, Socket 370) หันมาสนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR-SDRAM แทนที่จะเป็น RDRAM

แนวโน้มที่น่าจะเป็นไปได้มากที่สุดของทั้ง DDR II กับ RDRAM เวอร์ชันต่อไป เทคโนโลยี quard pump คือการอัดรอบเพิ่มเข้าไปเป็น 4 เท่า เหมือนกับในกรณีของ AGP ซึ่งนั่นจะทำให้ DDR II และ RDRAM เวอร์ชันต่อไป มีแบนด์-วิดธ์ที่สูงขึ้นกว่างปัจจุบันอีก 2 เท่า ในส่วนของ RDRAM นั้น การเพิ่มจำนวนสล็อตในหนึ่ง channel ก็น่าจะเป็นหนทางการพัฒนาที่อาจเกิดขึ้น ซึ่งนั่นก็จะเป็นการเพิ่มแบนด์วิดธ์ของหน่วยความจำขึ้นอีกเป็นเท่าตัวเช่นกัน และทั้งหมดที่ว่ามานั้น คงจะพอรับประกันได้ว่า การต่อสู้ระหว่าง DDR และ Rambus คงยังไม่จบลงง่าย ๆ และหน่วยความจำแบบ DDR ยังไม่ได้เป็นผู้ชนะอย่างเด็ดขาด


ข้อมูลจาก www.dcomputer.com, http://www.bcoms.net/hardware/ram.asp

วันพฤหัสบดีที่ 14 กุมภาพันธ์ พ.ศ. 2556

Macbook


แมคบุ๊ก (อังกฤษ: Macbook) เป็นเครื่องคอมพิวเตอร์โน้ตบุ๊ก ตระกูลแมคอินทอชจากบริษัทแอปเปิล วางจำหน่ายครั้งเมื่อวันที่ 16 พฤษภาคม พ.ศ. 2549 โดยรูปลักษณ์ทั่วไปมีลักษณะใกล้เคียงกับ ไอบุ๊ก (iBook) ซึ่งแมคบุ๊คนั่นได้ถูกพัฒนามาจาก iBook G4 สิ่งที่แมคบุ๊กต่างจากไอบุ๊กคือรายละเอียดภายในที่สูงกว่า แต่แมคบุ๊คนั้นไม่มีกราฟิกการ์ด (Graphic Gard) ในการแสดงผล สำหรับแมคบุ๊กนั่นทางแอบเปิ้ลได้เปลี่ยนชิปเซ็ตมาใช้ของตระกูล อิลเทล (Intel) ในระยะแรกแมคบุ๊กใช้ชิปเซ็ตในตระกูล Intel Duo Core 945GM ชิปเซ็ต และ กราฟิกการ์ด Intel's GMA950 ความเร็วบัสที่ 667 MHz และในปี 2007 แอบเปิ้ลได้เปลี่ยนชิปเซ็ตที่ใช้บนเครื่องแมคบุ๊กเป็นชิบเซ็ตตระกูลที่ใช้ในปัจจุบันคือ Intel Core2Duo ในแพลตฟอร์มของ Santa-Rosa Platfrom และเมื่อวันที่ 26 กุมภาพันธ์ พ.ศ. 2551 แอปเปิลได้อัปเดตอุปกรณ์ภายในของเครื่องแมคบุ๊กเป็น 965GM และกราฟิกการ์ด Intel GMA X3100 ความเร็วบัสที่ 800 MHz ซึ่งรวมไปถึงแมคบุ๊กโปร Macbook Pro และแมคบุ๊กแอร์ (Macbook Air) คอมพิวเตอร์โน้ตบุ๊ครุ่นล่าสุด ซึ่งได้ใช้ชิปเซ็ตตระกูลอินเทลแล้วเช่นเดียวกัน